Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Geologic - Monitoring, Mitigation, and Verification

Development of MM&V Models for Geologic Sequestration

Fengxing X. Han, Chuji Wang, Teresa C. Leone, and J. S. Lindner Institute for Clean Energy Technology, Mississippi State University

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

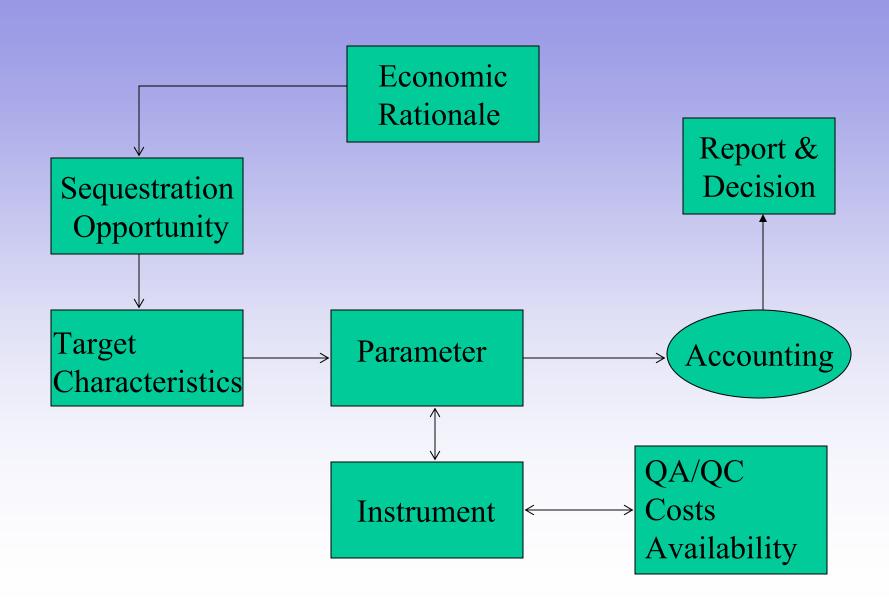
ICET Role in Southeast Regional Carbon Sequestration Partnership "SECARB" Phase II

- Task 7 MM&V Crosscut Support
- Subtask 7.1 Identify Emerging Technologies to Fill MMV Gaps
 - Instrumentation and Application Information
 - Model Development
- Subtask 7.2 Support Field Validation MM&V
 - Direct Support
 - UTA BEG Stacked Storage
 - VA Tech AGS Coal Seams
 - ARI EPRI Saline Formation
 - Model Validation

MM&V Models

- Overriding goal account for 95% of the CO_2 at less than 10% of total emplacement cost (NETL Technology Roadmap and Project Plan 2005)
- Development of a callable database that includes available instrumentation, associated costs, measurement frequency, QA/QC, accounting
- Allows for down-selection of most appropriate instrumentation for a given sequestration opportunity (site characteristics)
- Identifies instrumentation gaps, redundancy and emerging monitoring needs tracks system development and deployment

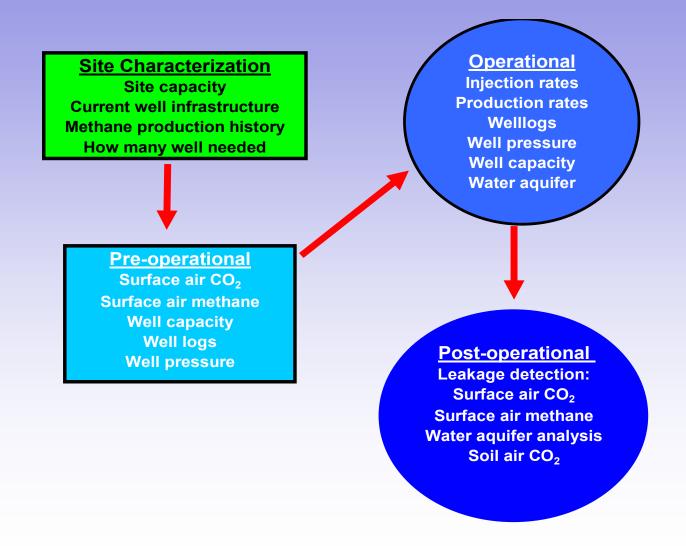
Database Development Path


- Evaluate Carbon Accounting Frameworks, DOE Roadmap and EIA 1605B
- Development of Site Specific MMV Models
- Model Testing with Available Data
- Apply Model to SECARB Phase II Demonstration Projects - Assess Completeness
- Compare Model Predictions to Results
- Model Refinements
- Model Validation, Application, and Future Directions
- Reporting and Database Distribution

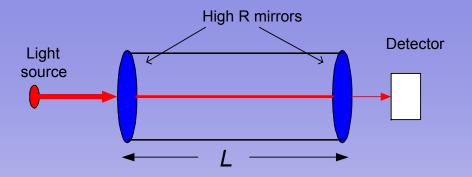
Database Structure

- Sequestration Site Characteristics
- Infrastructure
 - source plant operations
 - transportation/pipelines
- Commonalities
 - surface
 - aquifers
 - leakage
- Instrument Descriptions, Costs, QA/QC, measurement uncertainty, and Availability
- Number of Instruments Required, Frequency

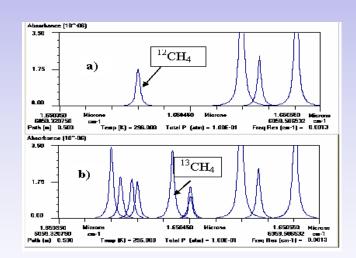
Functionality Classification Package

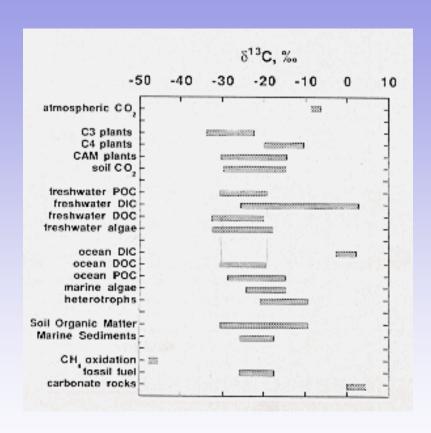

Examples of Scenarios and MM&V Targets

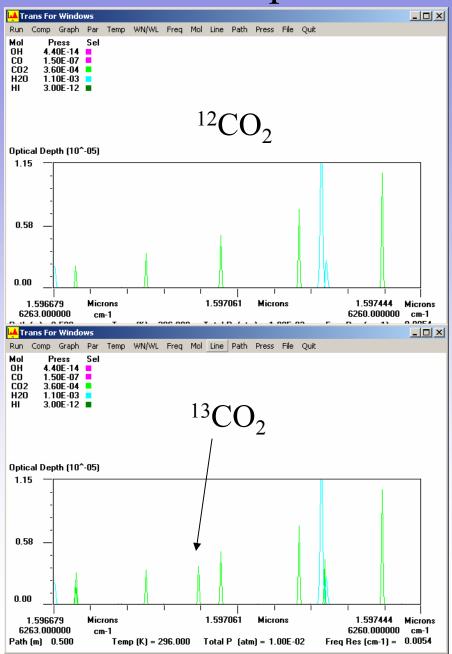
Scenario ID	Scenario	MMV Target	MMV Target ID
S100	Saline sequestration	Reservior Characteristics	T1**
S110	Saline sequestration	Characterizing brine samples	T2* *
S120	Saline sequestration	Characterizing fresh water samples	T3* *
S130	Saline sequestration	Characterizing atmospheric air	T4* *
S140	Saline sequestration	Surface topography	T5* *
S150	Saline sequestration	Soil Measurement	T6* *
S160	Saline sequestration	Well integrity	T7* *
S170	Saline sequestration	Monitoring Injection and postinjection	T8* *
S200	Enhanced oil production		
S300	Coalbed methane production		


Example of Instrument Table

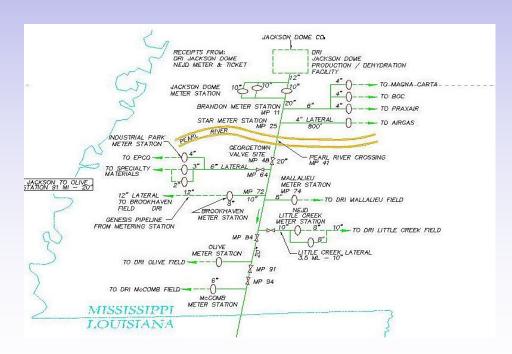
Instrument ID	Instrument Name	Instrument Cost	Instrument Function	Instrument Operational Cost
In10	ICP AES	\$0.00	Fe, Mn, Ca. Mg, As, Se, Cd, Zn, Pb	\$0.00
In100	Pressure	\$0.00	Pressure	\$0.00
In110	Temperature	\$0.00	Temperature	\$0.00
In120	CRDS	\$100,000.00	CO2 and isotope	\$0.00
In130	Eddy tower	\$0.00	CO2	\$0.00
In140	Flux accumulation chamber	\$0.00	CO2	\$0.00
In150	Tilmeters	\$0.00	Surface topography	\$0.00
In160	Seismic	\$0.00	Plume migration	\$0.00


Example of Application to Enhanced Coalbed Methane


Identified Issue



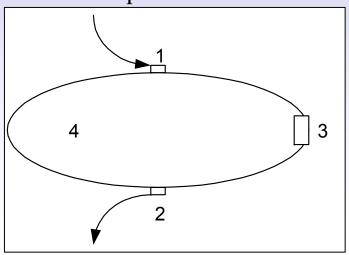
- Instrumentation is needed for rapid discrimination of ambient and sequestered CO₂
- Portable Cavity Ringdown
 Spectrometer
 Chuji Wang (DOE-NETL Grant # DE-RQ26-05NT500832)
 - Portable Unit -weight 30 lbs, CO₂: 300-2500 ppm, 0.3 25 ppm
 - 1 per mil for δ C-13, CH4: 0.5-1 ppm

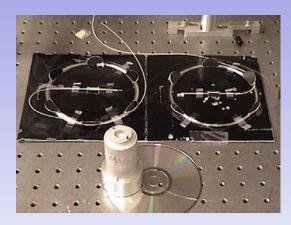

Real-Time Discrimination of C-13 Isotopes

Identified Issues

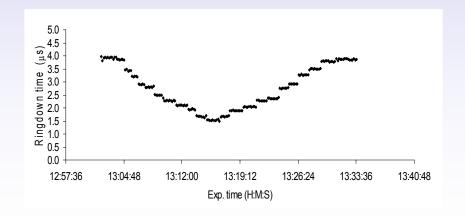
- Project Roadmap needs to include MM&V plan for expected increase in infrastructure
- Total CO₂ tracking from the source to the sink is needed
- Pipelines
 - Remote Sensing
 - CRDS
 - Water

Large increase in use of fiber optics for down-hole measurements


Fiber Ringdown Sensor


1:light beam coupled into the loop;

2:optical signal coupled to a photodetector;


3:sensor head;

4: fiber loop.

Conclusions and Path Forward

- Work has been initiated on the development of an application package for down-selection of monitoring needs for various geological sequestration opportunities
- Needs have been identified for discrimination of ambient and sequestered CO₂.
- Infrastructure MM&V should be considered for future large-scale sequestration activities

Acknowledgements

Helpful discussions with: Jack Pashin, Geological Survey of Alabama Susan Horvorka, Bureau of Economic Geology, University of Texas

Funding provided by the NETL Cooperative Agreement to the Southeast Regional Carbon Sequestration Partnership "SECARB" Southern States Energy Board (DE-FG26-05NT42590-CFDA 81.089) Subgrant to DIAL (SSEB-SECARB2-998-T7-MSUDIAL-2005-00) Co-funding from the James Worth Bagley College of Engineering, Mississippi State University